
Method
SESSION 8

Session Objectives
Recognize the use of method

Learn the concept of passing values to methods

Differentiate between user defined methods and standard methods

Differentiate between passing-by-value and passing-by-reference

Functions/Methods
The method describes the mechanisms that actually perform its tasks. The method hides from
its user the complex tasks that it performs, just as the accelerator pedal of a car hides from the
driver the complex mechanisms of making the car go faster.

It break up programs into smaller modules

Each module is a separate program

Modules are connected to the main program

Methods (Example)
Program to accept the details of an employee to calculate the salary

Fields are:
◦ Employee number

◦ Employee name

◦ Grade

◦ Basic Salary

◦ Standard allowance

◦ Standard deductions

Salary slip contains:
◦ Employee number

◦ Employee name

◦ Grade

◦ Basic Salary

◦ Allowances

◦ Net salary

◦ Deductions

Methods (Example Contd.)
Following calculations should be made:
◦ Net salary = (Basic + Allowances) - Deductions

◦ Allowances = House Rental Allowance(HRA) + Standard Allowance

◦ Deduction = Standard deductions + Provident Fund

◦ Provident fund is deducted at the rate of 6% of the Basic salary

◦ HRA and the allowance are based on the grade

Grade HRA

1 18% of Basic salary

2 15% of Basic salary

3 Nil

Methods (Example Contd.)
The above problem, if written in single module, will be too complex

This program is split into two smaller programs called:
◦ Provident Fund Calculation

◦ HRA Calculation

Methods (Example Contd.)

For calculating the salary of an employee:
Start

emp_no=0

emp_name

grade=0

basic=0

std_allow=0

std_ded=0

net_sal=0

allow=0

deduct=0

HRA=0

PF=0

reply = ‘y’

(Contd…)

Methods (Example Contd.)

while reply=’y’

do

Accept emp_no, emp_name, grade, basic, std_all, std_ded

PF = PF_CAL()

HRA = HRA_CAL()

allow = HRA + std_allow

deduct = std_ded + PF

net_sal = (basic + allow) - deduct

display emp_no, emp_name, grade, basic, allow, deduct, net_sal

display “Do you wish to continue(y/n)?”

Accept reply

enddo

End

Methods (Example Contd.)

Functions PF_CAL() and HRA_CAL()

PF_CAL ()

Start

if (grade <> 3)

PF = .06 * basic

else

PF = 0

endif

Return PF

HRA_CAL ()

Start

if (grade = 1)

HRA = .18 * basic

else

if (grade = 2)

HRA = .15 * basic

else

HRA = 0

endif

endif

Return HRA

Advantages of Methods
Maintains code efficiently

Eases in understanding the code

Eliminates redundancy of code

Makes code reusable

Parameters of a Methods
Function to add two values and display their sum:

Start

Add(2, 5)

End

Add(x is an integer, y is an integer)

Start

Declare sum as an integer

sum = x + y

Display sum

return

 Add(x is an integer, y is an integer) accepts two parameters, x and y as integers

 Add(2, 5) is function call with 2 and 5 as the values passed

Parameters of a Methods (Contd.)
The parameters of a function should be passed in the right number and right order

Example:
Start

Declare num as an integer

num = 10

Add(2, 5)

Add(‘9’, 4, 6)

Add(2, 5, num)

End

Add(x is integer, y is integer, z is integer)

Start

sum is an integer

sum = x + y + z

Display sum

return

Errors

Parameters of a Methods (Contd.)
Add(2, 5) results in an error as the function Add() is declared with 3 parameters but the function
call passes only 2 values

Add(‘9’, 4, 6) results in an error because ‘9’ is a character

Add(2, 5, num) does not result in an error because num is a variable of the type integer

Return Value
Values returned by the function to the main program

A function can pass only one value back to the calling program

Return Value (Example)
To find the sum of two numbers and return the sum to the main program

Start

sum is an integer

sum = Add(2,5)

Display sum

End

Add(x is an integer, y is an integer) returns integer

Start

var1 is an integer

var1 = x + y

return var1

voidMethods and Value-Returning Methods

A void method is one that simply performs a task and then terminates.

Console.WriteLine(“Hi!”);

A value-returning method not only performs a task, but also sends a value back
to the code that called it.

int number = Covert.ToInt32(“700”);

Defining a voidMethod
To create a method, you must write a definition, which consists of a header and
a body.

The method header, which appears at the beginning of a method definition, lists
several important things about the method, including the method’s name.

The method body is a collection of statements that are performed when the
method is executed.

Two Parts of Method Declaration

public static void DisplayMesssage()

{

Console.WriteLine(“Hello”);

}

header

body

Parts of a Method Header

public static void DisplayMessage ()

{

Console.WriteLine(“Hello”);

}

Method

Modifiers

Return

Type

Method

Name
Parentheses

Parts of a Method Header
Method modifiers

◦ public—method is publicly available to code outside the class

◦ static—method belongs to a class, not a specific object.

Return type—void or the data type from a value-returning method

Method name—name that is descriptive of what the method does

Parentheses—contain nothing or a list of one or more variable declarations if
the method is capable of receiving arguments.

Calling a Method
A method executes when it is called.

The Main method is automatically called when a program starts, but other
methods are executed by method call statements.

DisplayMessage();

Notice that the method modifiers and the void return type are not written in the
method call statement. Those are only written in the method header.

Passing Arguments to a Method
Values that are sent into a method are called arguments.

Console.WriteLine(“Hello”);

number = Convert.ToInt32(str);

The data type of an argument in a method call must correspond to the variable declaration in
the parentheses of the method declaration. The parameter is the variable that holds the value
being passed into a method.

By using parameter variables in your method declarations, you can design your own methods
that accept data this way.

Passing 5 to the displayValue Method

DisplayValue(5);

public static void DisplayValue(int num)

{

Console.WriteLine(“The value is {0}”, num);

}

The argument 5 is copied into the parameter
variable num.

The method will display The value is 5

Argument and Parameter Data Type Compatibility
When you pass an argument to a method, be sure that the argument’s data type
is compatible with the parameter variable’s data type.

C# will automatically perform widening conversions, but narrowing conversions
will cause a compiler error.

double d = 1.0;

DisplayValue(d);

Error! Can’t convert

double to int

Passing Multiple Arguments

ShowSum(5,10);

public static void ShowSum(double num1, double num2)

{

double sum; //to hold the sum

sum = num1 + num2;

Console.WriteLine(“The sum is {0}”, sum);

}

The argument 5 is copied into the num1 parameter.

The argument 10 is copied into the num2 parameter.

NOTE: Order matters!

Local Variables
A local variable is declared inside a method and is not accessible to statements
outside the method.

Different methods can have local variables with the same names because the
methods cannot see each other’s local variables.

A method’s local variables exist only while the method is executing. When the
method ends, the local variables and parameter variables are destroyed and any
values stored are lost.

Local variables are not automatically initialized with a default value and must be
given a value before they can be used

Optional Parameters
As of .Net Framework 4 onwards, methods can have optional parameters that allow the calling
method to vary the number of arguments to pass.

An optional parameter specifies a default value that’s assigned to the parameter if the optional
argument is omitted.

You can create methods with one or more optional parameters. All optional parameters must be
placed to the right of the method’s non-optional parameters—that is, at the end of the
parameter list.

public int Power(int baseValue, int exponentValue = 2)

Named Parameters
Normally, when calling a method that has optional parameters, the argument
values—in order—are assigned to the parameters from left to right in the
parameter list.

public void SetTime(int hour = 0, int minute = 0, int second = 0)

t.SetTime(); // sets the time to 12:00:00 AM
t.SetTime(12); // sets the time to 12:00:00 PM
t.SetTime(12, 30); // sets the time to 12:30:00 PM
t.SetTime(12, 30, 22); // sets the time to 12:30:22 PM

Recursion
A recursive method is a method that calls itself, either directly or indirectly through another
method.

As an example of recursion concepts, consider the factorial of a nonnegative integer n, written
n! (and pronounced “n factorial”), which is the product

n * (n – 1) * (n – 2) * … * 1

5! = 5 * 4 * 3 * 2 * 1
5! = 5 * (4 * 3 * 2 * 1)
5! = 5 * (4!)

Example
using System;
public class FactorialTest
{

public static void Main(string[] args)
{

for (long counter = 0; counter <= 10; counter++)
Console.WriteLine("{0}! = {1}", counter, Factorial(counter));

}
public static long Factorial(long number)

{
if (number <= 1)

return 1;
else

return number * Factorial(number - 1);
}

}

Returning a Value from a Method
Data can be passed into a method by way of the parameter variables. Data may
also be returned from a method, back to the statement that called it.

int num = Convert.ToInt32(“700”);

The string “700” is passed into the ToInt32 method.

The int value 700 is returned from the method and stored into the num
variable.

Defining a Value-Returning Method

public static int Sum(int num1, int num2)

{

int result;

result = num1 + num2;

return result;

}

Return type

This expression must be of the same data

type as the return type

The return statement causes

the method to end execution

and it returns a value back to

the statement that called the

method.

Calling a Value-Returning Method

total = Sum(value1, value2);

public static int Sum(int num1, int num2)

{

int result;

result = num1 + num2;

return result;

}

20 40

60

Methods

User-defined Methods
◦ Are written by programmers keeping the requirements in mind

Standard methods
◦ Are packaged with the tool

◦ Perform often-required actions

◦ Examples:

◦ System.Console.WriteLine(“Methods”)

◦ MessageBox.Show(“message”) in C#

Function Libraries
Collection of functions

Contains functions that deal with a particular issue. For example, a Math
function library will have functions that deal with mathematical functions such
as square root, average, exponent etc.

Once incorporated into the application, the statements for the function need
not be reproduced in the program

Directly the function with the correct number and type of parameters can be
called

A group of functions used very often are put in a function library

Base Class Library

 It is a mass of huge pre-written code that we
can easily incorporate, and use in our
applications.

 Base Class Library is shared among all the .net
supported languages.

 Classes in BCL are categorized into
namespaces based on their functionality.

Base Class Library (2)

Most commonly used namespaces:

System.Array namespace (1)

 Provides us with classes and methods for
manipulating arrays.

System.Array namespace (2)

 Output:

System.Array namespace (3)

 Other methods of the System.Array class:

 Class Math provides a collection of methods that enable you to
perform common mathematical calculations

System.Math namespace

System.IO namespace (1)

 It provides us classes to operate on files and
directories.

 Output:

System.IO namespace (2)

Creatin’ Directory C:\Scooby…
Directory Created on : 19-Nov-2019 10:49:59 PM

Passing Arguments: Pass-by-Value vs. Pass-by-Reference

Two ways to pass arguments to functions in many programming languages are pass-by-value
and pass-by-reference.

When an argument is passed by value (the default in C#), a copy of its value is made and passed
to the called function. Changes to the copy do not affect the original variable’s value in the
caller.

This prevents the accidental side effects that so greatly hinder the development of correct and
reliable software systems.

When an argument is passed by reference, the caller gives the method the ability to access and
modify the caller’s original variable.

Pass-by-Values
To accept a number and change its value in the function:
Start
num is an integer
Display “Enter a number”
Accept num
Display the value in num before change
change(pass num by value)
Display the value in num after change
End

change(var is an integer)
Start
var = 10
Display the value in var
return

Example 2 Cont…..
change(pass num by value)
◦ Variable num is passed to the function by value

change(var is an integer)
◦ Value of num is copied onto the variable var

The statement ‘Display the value in var’ displays the value of var to be 10

The statement ‘Display the value in num after change’ displays the original value
of num i.e. the accepted number from the user

Pass-by-Reference
To pass a variable by reference, C# provides keywords ref and out.

Applying the ref keyword to a parameter declaration allows you to pass a variable to a method
by reference—the called method will be able to modify the original variable in the caller.

The ref keyword is used for variables that already have been initialized in the calling method.
Normally, when a method call contains an uninitialized variable as an argument, the compiler
generates an error.

Preceding a parameter with keyword out creates an output parameter. This indicates to the
compiler that the argument will be passed into the called method by reference and that the
called method will assign a value to the original variable in the caller.

If the method does not assign a value to the output parameter in every possible path of
execution, the compiler generates an error. This also prevents the compiler from generating an
error message for an uninitialized variable that’s passed as an argument to a method.

A method can return only one value to its caller via a return statement, but can return many
values by specifying multiple output (ref and/or out) parameters.

Ref Vs Out

Ref Out
The parameter or argument must be initialized
first before it is passed to ref.

It is not compulsory to initialize a parameter or
argument before it is passed to an out.

It is not required to assign or initialize the value
of a parameter (which is passed by ref) before
returning to the calling method.

A called method is required to assign or
initialize a value of a parameter (which is
passed to an out) before returning to the
calling method.

Passing a parameter value by Ref is useful when
the called method is also needed to modify the
pass parameter.

Declaring a parameter to an out method is
useful when multiple values need to be
returned from a function or method.

It is not compulsory to initialize a parameter
value before using it in a calling method.

A parameter value must be initialized within
the calling method before its use.

Pass-by-Reference (Example)

To accept a number and change its value in the function:
Start
num is an integer
Display “Enter a number”
Accept num
Display the value of num before change
change(pass num by reference)
Display the value of num after change
End

change(var is an integer)
Start
var = 10
Display the value in var
return

Pass-by-Reference (Example Contd.)
change(pass num by reference)
◦ Function change accepts a reference of the variable num

change(var is an integer)
◦ Variable var is a reference to the variable num

The statement ‘Display the value in var’ displays the value of var to be 10

The statement ‘Display the value in num after change’ will also display 10 as the
variable var is a reference to the variable num

Example
using System;

class ReferenceAndOutputParameters {

public static void Main(string[] args) {

int y = 5;

int z;

Console.WriteLine("Original value of y: {0}", y);

Console.WriteLine("Original value of z: uninitialized\n");

SquareRef(ref y); // must use keyword ref

SquareOut(out z); // must use keyword out

Console.WriteLine("Value of y after SquareRef: {0}", y);

Console.WriteLine("Value of z after SquareOut: {0}\n", z);

Square(y);

Square(z);

Console.WriteLine("Value of y after Square: {0}", y);

Console.WriteLine("Value of z after Square: {0}", z);

}

static void SquareRef(ref int x)
{

x = x * x;
}
static void SquareOut(out int x)
{

x = 6;
x = x * x;

}
static void Square(int x)
{

x = x * x;
}

}

Original value of y: 5
Original value of z: uninitialized
Value of y after SquareRef: 25
Value of z after SquareOut: 36
Value of y after Square: 25
Value of z after Square: 36

Output:

Method Overloading
Methods of the same name can be declared in the same class, as long as they have different sets
of parameters (determined by the number, types and order of the parameters). This is called
method overloading

Method Overloading

 Three ways of overloading methods:
• Specifying different number of parameters

• Specifying different types of parameters

• Specifying different sequence of parameters

 By specifying different number of parameters:

Method Overloading (2)

 By specifying different types of parameters:

Method Overloading (3)

