
File Handling in C#
SESSION 10

Objectives
Discuss different classes within System.IO namespace

Discuss different kinds of stream handling with C#

List various methods and properties used for file Input/Output

Implement file handling and other stream input handling with C#

IO Namespace and its Classes
IO namespace includes classes that facilitate reading and writing of
data to data streams and files

Classes of IO namespace used for handling files are:

BinaryReader TextWriter

BinaryWriter Directory

Stream File

TextReader FileSystemInfo

BinaryReader and BinaryWriter
These classes are derived from System.Object class

These classes are used to format binary data

Data can be read and written from any C# variable to the specified stream

BinaryReader Class
Used for reading binary data

Methods supported are:

Methods Description

Close() Used to close the current stream from which data is being
read

Read() Employed to read characters from the specified stream

ReadDecimal() Reads a decimal value from the specified stream

ReadByte() Reads a byte value from the specified stream. The
position in the stream is advanced by one byte

BinaryWriter Class
It is used for writing binary data from a C# variable to a specified
stream

The most commonly used methods of this class are Close() and
Write() methods

The Close() method is similar to the BinaryReader class Close()
method

Close() method is used to close the current stream to which the
binary data is being written and also the current BinaryWriter

BinaryReader and BinaryWriter - Example
using System;

using System.IO;

class BinaryDemo

{
private const string fname = "Binary.data";

public static void Main(String[] args)

{

//check if file already exists

if (File.Exists(fname))

{

Console.WriteLine("{0} already exists!", fname);

return;

}

// if not existing then create a new empty data file.

FileStream fs = new FileStream(fname,

FileMode.CreateNew);

BinaryReader and BinaryWriter - Example

// Create the writer for data.

BinaryWriter w = new BinaryWriter(fs);

for (int i = 0; i < 11; i++)

{
w.Write((int) i);

}

Console.WriteLine ("Data has been written to the file!");

w.Close();

fs.Close();

// Create the reader for data.

fs = new FileStream(fname, FileMode.Open, FileAccess.Read);

BinaryReader r = new BinaryReader(fs);

Console.WriteLine("The data file contents are:");

BinaryReader and BinaryWriter – Example
// Read data from the data file.

for (int i = 0; i < 11; i++)

{

Console.WriteLine(r.ReadInt32());

}

w.Close();

}

}

Stream Class
It is an abstract class from which different classes are being derived

Some of its derived classes are:
◦ MemoryStream

◦ BufferedStream

◦ FileStream

◦ NetworkStream

◦ CryptoStream

MemoryStream class
This class is used to read and write data to memory

Some of the methods of MemoryStream are:

Method Description

Read() Used to read the MemoryStream and write the
value to the buffer.

ReadByte() Used to read a byte from the MemoryStream

Write() Used to write values from the buffer into the
MemoryStream

WriteByte() Used to write a byte to the MemoryStream from
the buffer.

WriteTo() Used to write contents of one memory stream
into another.

BufferedStream Class
It is used to read and write to the buffer

It has two overloaded constructors with following syntax:

public BufferedStream(Stream StName);

//constructor type 1

public BufferedStream(Stream StName, int bsize);

//constructor type 2

BufferedStream Class - Example

using System;

using System.IO;

public class MemoryStreamDemo

{

public static void Main()

{

MemoryStream memstr = new MemoryStream();

System.IO.BufferedStream buffstr = new

System.IO.BufferedStream(memstr);

buffstr.WriteByte((byte)100);

buffstr.Position =0;

byte[] arrb= {1, 2, 3};

buffstr.Read(arrb,0,2);

Console.WriteLine("The contents of the array are:");

BufferedStream Class - Output

for (int i=0;i<3;i++)

{

Console.WriteLine("{0}",arrb[i]);

}

Console.WriteLine("The return value for

ReadByte() is {0}",buffstr.ReadByte());

}

}

FileStream Class
This class is used to perform read and write operations on files

Read() and Write() methods are applied for synchronous read and
write operations

BeginRead() and BeginWrite() methods are used for asynchronous
read and write operations

The default mode in the FileStream class is synchronous read/write
operations

FileStream Class Constructors
Constructors Description

FileStream(string FilePath,
FileMode)

Takes in the path of the file to be read
from or written to and any one of the
FileMode enumerator values as its
arguments.

FileStream(string FilePath,
FileMode, FileAccess)

Takes in the path of the file to be read
from or written to, any one of the FileMode
enumerator values and FileAccess
enumerator values as it arguments

FileStream(string FilePath,
FileMode, FileAccess,
FileShare)

Takes in the path of the file to be read
from or written to, any one of the FileMode
enumerator values, FileAccess enumerator
values and any one of the FileShare
enumerator values as it arguments.

Enumerators used with FileStream class

FileMode Enumerators
◦ Append

◦ Create

◦ CreateNew

◦ Open

◦ OpenOrCreate

◦ Truncate

FileAccess Enumerators
◦ Read

◦ Write

◦ ReadWrite

FileShare Enumerators

o None
o Read
o Write
o ReadWrite

FileStream Class Example
using System;

using System.IO;

using System.Text;

class FileStreamDemo

{
public static void Main()

{

Console.WriteLine ("Enter the text file name");

string fname = Console.ReadLine();

StreamReader sr = new StreamReader(fname) ;

string line;

while ((line = sr.ReadLine()) != null)

{

Console.WriteLine (line);

}

Console.WriteLine("");

FileStream Class - Output
sr.Close();

FileStream filestr = new FileStream(fname,

FileMode.Append, FileAccess.Write, FileShare.Write);

filestr.Close();

StreamWriter sw = new StreamWriter (fname, true,

Encoding.ASCII);

string NextLine = "This is the appended line.";

sw.Write(NextLine);

sw.Close();

Console.WriteLine ("Appended one line into the file");

}

}

NetworkStream class
It is used to send and receive data across the network

It resides within the System.Net.Sockets namespace

The Read(), ReadBytes(), Write() and WriteBytes() methods are
employed for reading and writing to streams and buffers on the
network

CryptoStream Class
It is used to link the stream of data to any cryptography object for the purpose of encrypting the
data

It resides within the System.Security.Cryptography namespace

CryptoStream Class - Example

using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
public class CryptoDemo
{

public static void Main()
{

Console.WriteLine("Enter the text file name");
string fname = Console.ReadLine();
Console.WriteLine("Encrypting...");

CryptoStream Class - Example

try

{

FileStream stream = new FileStream(fname,

FileMode.OpenOrCreate,FileAccess.Write);

DESCryptoServiceProvider cryptic = new

DESCryptoServiceProvider();

cryptic.Key = ASCIIEncoding.ASCII.GetBytes ("ABCDEFGH");

cryptic.IV = ASCIIEncoding.ASCII.GetBytes("ABCDEFGH");

CryptoStream crStream = new CryptoStream(stream,

cryptic.CreateEncryptor() ,CryptoStreamMode.Write);

byte[] data = ASCIIEncoding.ASCII.GetBytes ("Hello

World!");

crStream.Write(data,0,data.Length);

crStream.Close();

CryptoStream Class - Example

stream.Close();

Console.WriteLine ("Done with Encrypting.");

}

catch(Exception e)

{

Console.WriteLine (e.StackTrace);

Console.WriteLine (e.Message);

}

}

}

Directory and File Classes
The directory class contains static methods that help in handling
directories and subdirectories

The static methods of this class can be called without an instance of
a directory

The file class contains static methods that help in handling files

It also helps in the creation of FileStream class

Methods of the File class
Methods Description

Copy(string SourceFilePath,
string DestinationFilePath);

Used to copy the contents of a source file to a
destination file in the specified path. If the
destination file does not exist, a new file is
created with the specified name in the
specified path.

Create(string FilePath) Used to create a file with the specified name
in the specified path.

Delete(string FilePath) Used to delete a file from a specified path

Exists(string FilePath) Used to verify whether a file with the specified
name exists in the specified path. It returns a
Boolean value.

Move(string SourceFilePath,
string DestinationFilePath)

Used to move the specified file from the
source location to the destination location.

Example of Directory and File Classes
using System;

using System.IO;

class DirectoryDemo

{

static void Main(string[] args)

{

Directory.CreateDirectory ("Testdir");

File.Copy ("D:\\abc.txt", "Testdir\\abc.txt");

Console.WriteLine("File Content Copied");

}

}

FileSystemInfo class
It is an abstract class from which the FileInfo and DirectoryInfo classes have
been derived

The DirectoryInfo class contains methods that can be used to handle directories
and subdirectories

The DirectoryInfo class exposes instance methods

The methods of DirectoryInfo class can be called only by an instance of the
DirectoryInfo class

The FileInfo class contains methods that can be used to handle files

Properties and Methods of DirectoryInfo Class
Properties Description

FullName Retrieves the complete path of the directory

Parent Retrieves the immediate parent directory of
the specified subdirectory.

Root Retrieves the root node of the given path

Methods Description

Create() Used to create a directory

CreateSubdirectory(string
directorypath)

Creates a subdirectory under the specified
directory in the specified path.

MoveTo(string
destinationpath)

Moves the current directory to the given
destination path.

Properties and Methods of FileInfo Class
Properties Description

DirectoryName Contains the full path of the file.

Extension Used to retrieve the extension of the
specified file with the period (.).

Methods Description

CopyTo(string
destinationfile)

Used to copy the contents of the existing file
into a new file.

Create() Used to create a file.

Delete() Used to permanently delete a file

OpenWrite() Creates an instance of the FileStream class
for, both, read and write operations

OpenRead() Creates an instance of the FileStream class
for read only operation.

TextReader class
It is an abstract base class for the StreamReader and StringReader
classes

These classes can be used to read a sequential series of characters

The StreamReader reads a character in a byte stream and converts it
to the specified encoding

The StringReader class is used to read data from an input string

Methods of StreamReader class

Methods Description

Read() Used to read a character from the byte stream
and move the current position to the next
character.

ReadLine() Reads a sequence of, or a line of character
from the byte stream and outputs a string data.

ReadToEnd() Used to read the byte stream from the current
position in the stream to the end of the stream.

Example of StreamReader class
using System;

using System.IO;

public class TextDemo

{

static string ans="y";

public static void Main(String[] args)

{

Console.WriteLine("1. Read File ");

Console.WriteLine("2. Read String ");

Reading();

}

static void Reading()

{

try

{

if(ans=="y" || ans=="Y")

{

Example of StreamReader class Contd…

Console.Write ("Enter Your Choice [1/2]: ");

int choice=Convert.ToInt32(Console.ReadLine());

If (choice==1)

{

Console.WriteLine ("Enter the file name: ");

string Filename = Console.ReadLine();

if (!File.Exists(Filename))

{

Console.WriteLine("{0} does not exist!“ ,Filename);

return;

}

StreamReader sr = File.OpenText(Filename);

String input;

Console.WriteLine("The contents of the file are: \n");

Example of StreamReader class Contd…
while ((input= sr.ReadLine())!=null)

{

Console.WriteLine (input);

}

Console.WriteLine ("The end of the stream is reached.");

sr.Close();

Console.Write("Do you want to continue [Y/N]:");

ans= Console.ReadLine();

Reading();

}

else if (choice==2)

{

Console.Write ("Enter a string: ");

String str = Console.ReadLine();

char[] b = new char [str.Length];

Example of StreamReader class – Contd…
StringReader sr = new StringReader (str);

sr.Read(b, 0, str.Length);

Console.WriteLine (b);

Console.Write ("Do you want to continue [Y/N]:");

ans= Console.ReadLine();

Reading();

}

else

{

Console.WriteLine ("Enter either 1 or 2 as your

choice");

}

}

}

Example of StreamReader class – Contd…

catch(Exception e)

{

Console.WriteLine (e.StackTrace);

Console.WriteLine (e.Message);

}

}

}

TextWriter class
It is an abstract base class for classes that can be used to write sequential
characters

The StreamWriter and StringWriter classes are two of the derived classes of the
TextWriter class

The StreamWriter writes characters to a stream in a specified encoding

The StringWriter class is used to write data to a string

Methods of StreamWriter class

◦ Write()

◦ WriteLine()

Methods of StreamWriter

Method Description

Write() Used to write a character from the
stream and move the current position
to the next character.

WriteLine() Writes a sequence of a line of
characters to the stream. It adds a
line terminator to mark the end of the
string.

Example of StreamWriter class
using System;

using System.IO;

using System.Text;

public class Writer

{

static string ans="y";

public static void Main(String[] args)

{

Writing();

}

static void Writing()

{

if (ans=="y" || ans=="Y")

{

Console.Write ("Enter the file name: ");

string Filename = Console.ReadLine();

Output - StreamWriter
if (!File.Exists(Filename))

{

Console.WriteLine("{0} does not exist!",Filename);

return;

}

StreamWriter sr = File.AppendText(Filename);

Console.Write ("Enter a string to be

written to the file: ");

String str = Console.ReadLine();

sr.WriteLine(str);

sr.Close();

Console.Write ("Do you want to continue [Y/N]: ");

ans= Console.ReadLine();

Writing();

}

}

}

